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Nonmonotonical behavior in correlated site-bond percolation

A. J. Ramirez-Cuesta, R. J. Faccio, and J. L. Riccardo
Departamento de Fisica, Universidad Nacional de San Luis, CONICET, Casilla de Correos 136, (5700) San Luis, Argentina
(Received 3 September 1997

Site-bond percolation is addressed in a very general class of correlated site-bond systems. The site-bond
model analyzed provides a simple natural picture of disordered media such as porous materials, nonuniform
surfaces adsorption potential, conductivity of inhomogeneous systems, and landscapes. Tlséebqeatco-
lation threshold exhibits a nonmonotonical behavior, showing maxima and minima as statistical correlation of
two-point lattice properties varies from zero to one. Phase diagrams for the general case of correlated site-bond
percolation are obtained by Monte Carlo simulation. The continuum percolation limit is recovered for perco-
lation at maximum correlatioS1063-651X97)08612-]

PACS numbe(s): 81.05.Rm, 64.60.Ak, 61.43.Bn, 68.45¢

[. INTRODUCTION thors have addressed mechanigh);, however, quenched
disorder in percolation has been given significantly less at-
Percolation models have been of central significance iention[7,13].
modern statistical physics to gain understanding about phe- It is known that short range correlations do not bring the
nomena in very different areas of science. Processes such gsults out of the RP universality clagdthough it has been
polymerization, fluid-phase transport in porous media, disfecently argued that beta exponents may be affedtéd 5)
ease spreading, disordered systems, surface aggregation, faile long range correlations may give critical exponents
est fires, electron localizatiofil], hopping conduction in diverse from those of RP7] (strictly, the correlation func-
amorphous solidg2], etc. can be readily modeled in terms of tion has to decay a8(r)=r?", with H< — 1/v being the RP
percolation concept$3—5]. Moreover, lattice percolation critical exponent Concerning the percolation threshold, it
provides the simplest geometrical model of a phase transhas always been accepted that either site or bond correlations
tion. Dominant concepts such as critical exponents, scalingecreases the critical fraction at which a spanning cluster
laws, and universality classes are continuously beingppearg6,12. On one hand, scaling properties and critical
checked by investigating percolation models. exponents different from those of RP are significant from a
There exist two main categories concerning percolatiorfundamental viewpoint. On the other hand, cluster morphol-
processesta) simple percolatiojalso called random perco- 0gy and percolation threshold are important concepts in ap-
lation (RP)] in which the elements of a latticésites and plied science since they determine work regimes and effi-
bonds in generalare occupied at random with a preset prob-ciency of technologically relevant processes such as oil-
ability p; (b) correlated percolatioGCP) where occupation recovery, drying, etc.
probabilities of neighboring sites are not independent of each Site-bond percolation was studied first in Refs6—18.
other (although the term correlated percolation is sometimeg-urthermore, correlated site-bond percolation has also been
strictly reserved for systems with algebraic-law decayinginvestigated since the seminal papers in R&€]. Here we
correlations, we use it here with a broader significance present results for site-bond percolation and phase diagrams
Most studies have dealt with RP. Recent comprehensive rdor a general class of self-consistent lattice models of inho-
view articles on percolation formalism and applications aremogeneous media, so-called dual site-bond méae+-22,
those in Refs[3,6—8. However, correlated percolation turns that exhibit a nonmonotonic behavior of the percolation
out to be a more interesting model since it can take intghreshold not displayed by any other correlated site-bond
account natural correlations present in realistic systems sudhodel in the best knowledge of the authors. Moreover, the
as magnetic systems below the critical temperaturegharacteristics of correlated percolation can be traced to el-
insulator-metal alloys, fluid phase in porous media, etc. Twg@mentary statistical properties of the disordered media in
essential mechanisms by which correlations enter percolatiowhich it develops.
can be distinguishedl) interactions between the units rep-
resenting occupied sites or bon@®r instance, the Ising
model[9-11], dilute magnet§12]; (2) quenched statistical Il. MODEL OF CORRELATED SITE-BOND LATTICE
correlat!ong betwe_en the metric of lattice eI.eme(pme and Let us assume a regular lattice of sites with connectivity
throat size in a void porous space, local minima and saddle- . S ;
: : ; . . ¢, connected by bonds. Disorder is simply introduced by
point energy in an adsorption potential surface, mountain

height and valley depth in landscapes, grain and border Corg:_haracterlzmg sites and bonds by their sizer, (or any

ductivity in inhomogeneous solid materials, gt&everal au- other property of sites and bonds applicable to a given physi-
’ cal procesg having density frequency functiong(ry),

fp(rp) and cumulative distributionsS(rs)=fgsfs(r)dr,

* Author to whom correspondence should be addressed. EIe(B(rb):f:)bfb(r)dr, respectively. The most transparent
tronic address: jlr@unsl.edu.ar counterpart of our model is a disordered porous medium

1063-651X/98/5{1)/7354)/$15.00 57 735 © 1998 The American Physical Society



736 A. J. RAMIREZ-CUESTA, R. J. FACCIO, AND J. L. RICCARDO 57

0-7 [ T T T T v T v T

(b)

L 1 L 1 M 1 M 1 M 7
b s b s r 00 02 04 06 08 1.0
mom M M Q (Degree of Overlapping)
(bond(site)size) ) .
FIG. 2. Percolation threshold, vs degree of overlapping}
FIG. 1. Site and bond size density frequency distribution func-between the distributiorf,, f,,. Symbols correspond to MC simu-
tions f4(r), fp(r); (@ null degree of overlapping) =0 (random  |ation on a square lattice of>=700x700 sites(2X 700X 700
site-bond latticg (o) finite ) (0<2<1) (correlated site-bond lat- bond3. Filled symbols correspond to pure bonds percolation
tice). (ps=1) for proceduréP1) (filled triangles and(P2) (filled circles,
respectively. Pure site percolatiop,=1) is shown with open
where pore bodies and throats are represented by sites aggmbols for(P1) (open trianglesand (P2) (open circles A typical
bonds of our lattice model, respectivg®0]. There exists a finite-size effect is shown in the line below, for ddféled circles
natural constraint for sites and bonds, named the constructicamd L 2= 200x 200.
principle (CP), that requires the whole site-bond lattice to be
self-consistent, which can be stated as follows=ry ,  and f,(r) functions turns out to be extraordinarily simple
j=1,...c: for all i, where the index runs over the sites since the recent development of proper MC technid@&s
andj runs over thee bonds connected to thiesite (sites are It simply reduces to statistical relaxation driven by transi-
always equal in size or larger than bonds connected to)themtions fulfilling the CP, from an arbitrary initial configuration
This inequality can always be fulfilled s and f,, do not  of site and bonds sizes sampled frégandf,, respectively.
overlap at all. However, ifs andf,, do overlap(see Fig. 1,
some sites and bonds cannot be nearest neighbors in the lat-
tice, hence size correlation naturally arises. The elementary i CORRi'ﬁsTuEll_DTg';ﬁgg'l\'sDCEEEICOOI\ILAHON'
correlation can be explicitly described in its simplest way
through a joint site-bond density functiorisy(rs,rp) Percolation on a square lattice was studied by simulation
=f4(re)fu(ry) ¢(rs.rp), Whereg denotes a site-bond corre- for uniform site and bond density functionst,(ry)
lation function. If nothing but maximum configurational en- = 1/(x\, — X)) VXm=r <Xy andf(r,)=0 otherwise, where
tropy (other than CPis required in order to self-consistently x=s b holds for sites and bonds, respectivéthis is the
distribute size for sites and bonds over the lattipés given  simplest representation of a highly disordered sytéiwo

0.3k

by the general expression main procedures were introduced to define the set of occu-
B(r) pied elements(P1) sites and bonds of increasing size are
exfl g dB/(B=9)] filled up starting from the smallest siZé corresponds to
(rs,rp)= B(ro)—S(ry for rs=ry capillary condensation in porous networké? elements of

decreasing size are filled starting from the biggest $ize

and ¢(r,r,)=0 otherwise[20,23. Let us denotef), the  resembles mercury intrusion and oil imbibition of a porous
degree of overlapping betwedn and f,, as the common Mmedid. Accordingly, givenps,py, the fraction of occupied
area under both curvéshaded area in Fig)lthen bears sites and bonds, respectively, the filled phase embodies the
the following general properties: lig,, =1 (random elements that fulfilk <S™*(ps), r,<B~*(py) for (P1) and
site-bond lattick limg,_., ¢=8(rs—r,) (heterogeneous set Fs=S *(1—ps), r,=B"*(1—pp) for (P2.
of infinitely large homotatic domains( is an elementary For pure bond ¢s=1) as well as pure sitepy=1) per-
measure of site-bond size correlation. colation, the thresholgg , pS exhibits a minimum fo(P2) as

This description provides a general framework for mod-the overlap() increasegso does site-bond correlatipfrom
eling inhomogeneous porous media, stochastic adsorptioh to 1 (Fig. 2). This turns out to be a remarkable behavior
fields, etc., with spatial size correlations from the existencénasmuch as site-bond correlation only promotes cooperation
of two distinctive elements of the network that are identified,between neighboring elements lowering the threshold for
in general, as sites and bonds. It is known that real porou§ <0.7, while for{)>0.7 the greater the spatial correlation
materials, such as the Indiana limestone, show correlatiothe more randomlike percolation behayggical lattice size
between pore bodies and throats sig25]. Futhermore, the was L2=700 sites(2x 700> bonds. Finite-size effects are
simulation of site-bond lattice systems from genefrdir) shown in Fig. 2. The limipg(0)=0.5 is trivial. In addition,
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FIG. 3. Nearest neighb@NN) bond correlation functions;y, ;
(open triangles Cyp,, (0pen circley vs () corresponding to the 1.0
domainsl'y, T', defined by procedure®1) and(P2) at percolation,
respectively. Filled squares shddy, for all NN bonds of the lat-
tice.
pp(Q)=0.5 for Q—1 would be expected since sites and
bonds segregate into infinitely large domains containing ele-
ments of equal size with neither concave nor convex bound- a® 0.5 e 0-00
ary, thus mapping the lattice problem onto continuum ran- e
dom percolatiorj24]. —*— Q=06
An even more unexpected finding is thzfi(Q) shows a —A— Q=07
maximum for(P1) at approximately the same value Qfas —v—Q=0.75
(P2. In other words, the critical fraction is larger than the —e— Q=038
one for random percolation, which, to the author’s best
knowledge, has never been observed before in two- 0'% 0 0.5 1.0
dimensional2D) randomlike percolation. We should bear in ) ) )
mind that these are straightforward consequences of the el- pb (fraction of occupied bonds)
ementary construction principl€€P) and maximum entropy )
principle.

The facts can be rationalized by considering the influence FIG. 4. Phase dmgrar_n for the per_colat_mg nonp_ercola_tmg phases
. as a function of the fraction of occupied sitpg,(vertical axig and
of elementary correlations on the morphology of the §gts . . . .
. . . bondspy, (horizontal axi$ (a) for (P2); (b) for (P1). As shown in the
I'; including the elements that belong to the occupied phas

. . ﬁlsets, the various symbols correspond to an increasing value of the
defined by(P1) anq (P2, re_spectlvely. We calculate the el- degree of overlapping betweenf (r) andf(r).
ementary correlation function

(ro—(re)(rt—(re))) effect reverses and both percolation thresholds tend to 0.5 for
bb.| = b Vb/Jb > b , (—1 where the domaink; andI’, turn out to be topologi-
((re=(rp))% cally equivalent. For pure-site percolatiop,&1) also a

local minimum appears fdrR2. The effect is smoother than
wherery,, ry are nearest neighbor bondsl’; and(ry,), the  the one for bonds because of the lower connectivity of sites.
statistical mean over the set, for 1,2. All long-ranged cor- All the observed extrema showed up at approximately the
relations can be thought of as merely consequences of thisame value of) regardless of the particular mechanism to
basic correlation, so the topological features of percolationilling up elements of the lattice. This clearly displays a dis-
can already be inferred froi@y,; . As Fig. 3 showsCyp,  tinctive characteristic of the disordered media underlying
increases monotonically witlf), thereby loweringpy for  percolation. The phase diagram for the percolation-
1=<0.7-0.75 as shown in Fig. 2. Within this ranGgy,, iS  nonpercolation transitiofFig. 4) shows the general case of
almost vanishing, thus in agreement withf~0.5 for  site-bond percolation for bottP1) and (P2 rules. It can be
Q=<0.6; thenp{, increases, reaching a maximum(=0.75.  observed that a mimimum gfy, is reached for(P2 even
This extraordinary increment appears because part of phageough the site occupation probability is other than Goe
I', is embodied and isolated within phaBe under the form  ps=<0.5 percolation is not attainable in any walkfigure 4b)
of small clusters(provided thatCpy, ;<Cpp» and both do- displays a rich phase diagram where maximap@nare still
mains topologically coexigthence, it does not contribute to possible forps=0.9.
percolation as it would do for RP. Wheby,;, ;> Cy,y, , this A simplistic physical effect of the nonmonotonic behavior
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of pg(pS) discussed above can be visualized by consideringroperties of the lattice elements are adthocassumptions
imbibition and drainage in 2D structurf®6]. Although per-  but straightforward consequences of two essential principles,
colation does not rigorously match the characteristics of dhat is, the construction principle and the maximum entropy
fluid phase in a porous medium it is accepted that the erroprinciple. There is a dominant result in the present work that
caused by modeling invasion percolation by means of RP illows from the basic assumptions, namely, the correlation
often negligible[4]. If we think of a 2D structure initially —and topology of the set of small elements in the inhomoge-
filled by a nonwetting(NW) phase that is displaced by a neous network are, in general, distinct from those of the
wetting (W) phase sequentially invading the smallest ele-large elements. This is a general outcome of the dual site-
ments connected to the interface, the latter will breakbond model, which is expected to be valid in lattices that are
through the structure, forming a spanning cluster when th&@ot two dimensional. A precise resolution of small and large
fraction of invaded elements reachgfs(the limiting case of ~pore-size correlations in a void-space network of porous ma-
pure bond percolation is depicted by full triangles in Fiy. 2 terials would be desirable to check the pertinence of the
Since at this stage the fraction of the NW phase expelledPresent description to real systems. . .
from the network is als@¢ (the remaining gets trapped in ~ The study addresses an unexpected behavior of simple
the form of clusters surrounded by tiéfluid), the resultin  Percolation properties of a disordered system conceived upon
Fig. 2 means that there exists a correlated structur@eneral grounds._ The distinct behavior of the_ percolating
(Q~0.75) for which the volume recoverdeelative to the Phase of large sites and bonds compared with the corre-
total volume reaches a maximum before the invading fluid SPonding to small ones, caused by the spatial size correlation
flows throughout it. Conversely, for drainage the NW phasé)etwegn the lattice entities, appears as a unique charact.enstlc
displaces thaV fluid from the largest pore connected to the of the inhomogeneous media Fhat shou_ld considerably influ-
interface as the external pressure is increased. The effect 8fcé(@nd hence could be confirmephysical processes tak-
topological correlation on percolation properties for drainagdNd Place within the porous space like capillary condensa-
would rather match the results shown by circles in Fig. otion, mercury intrusion, imbibition, and drainage fluid phase
(full circles and empty circles denote pure bond and pure sitd'0rphologies.

percolation, respectivelyHenceforth, there exists a measure
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