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Nonmonotonical behavior in correlated site-bond percolation
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Site-bond percolation is addressed in a very general class of correlated site-bond systems. The site-bond
model analyzed provides a simple natural picture of disordered media such as porous materials, nonuniform
surfaces adsorption potential, conductivity of inhomogeneous systems, and landscapes. The bond~site! perco-
lation threshold exhibits a nonmonotonical behavior, showing maxima and minima as statistical correlation of
two-point lattice properties varies from zero to one. Phase diagrams for the general case of correlated site-bond
percolation are obtained by Monte Carlo simulation. The continuum percolation limit is recovered for perco-
lation at maximum correlation.@S1063-651X~97!08612-1#

PACS number~s!: 81.05.Rm, 64.60.Ak, 61.43.Bn, 68.45.2v
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I. INTRODUCTION

Percolation models have been of central significance
modern statistical physics to gain understanding about p
nomena in very different areas of science. Processes su
polymerization, fluid-phase transport in porous media, d
ease spreading, disordered systems, surface aggregation
est fires, electron localization@1#, hopping conduction in
amorphous solids@2#, etc. can be readily modeled in terms
percolation concepts@3–5#. Moreover, lattice percolation
provides the simplest geometrical model of a phase tra
tion. Dominant concepts such as critical exponents, sca
laws, and universality classes are continuously be
checked by investigating percolation models.

There exist two main categories concerning percolat
processes:~a! simple percolation@also called random perco
lation ~RP!# in which the elements of a lattice~sites and
bonds in general! are occupied at random with a preset pro
ability p; ~b! correlated percolation~CP! where occupation
probabilities of neighboring sites are not independent of e
other~although the term correlated percolation is sometim
strictly reserved for systems with algebraic-law decay
correlations, we use it here with a broader significanc!.
Most studies have dealt with RP. Recent comprehensive
view articles on percolation formalism and applications
those in Refs.@3,6–8#. However, correlated percolation turn
out to be a more interesting model since it can take i
account natural correlations present in realistic systems s
as magnetic systems below the critical temperatu
insulator-metal alloys, fluid phase in porous media, etc. T
essential mechanisms by which correlations enter percola
can be distinguished:~1! interactions between the units re
resenting occupied sites or bonds~for instance, the Ising
model @9–11#, dilute magnets@12#; ~2! quenched statistica
correlations between the metric of lattice elements~pore and
throat size in a void porous space, local minima and sad
point energy in an adsorption potential surface, mount
height and valley depth in landscapes, grain and border c
ductivity in inhomogeneous solid materials, etc.!. Several au-
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thors have addressed mechanism~1!; however, quenched
disorder in percolation has been given significantly less
tention @7,13#.

It is known that short range correlations do not bring t
results out of the RP universality class~although it has been
recently argued that beta exponents may be affected@14,15#!
while long range correlations may give critical exponen
diverse from those of RP@7# ~strictly, the correlation func-
tion has to decay asC(r )}r 2H, with H,21/n being the RP
critical exponent!. Concerning the percolation threshold,
has always been accepted that either site or bond correla
decreases the critical fraction at which a spanning clu
appears@6,12#. On one hand, scaling properties and critic
exponents different from those of RP are significant from
fundamental viewpoint. On the other hand, cluster morph
ogy and percolation threshold are important concepts in
plied science since they determine work regimes and e
ciency of technologically relevant processes such as
recovery, drying, etc.

Site-bond percolation was studied first in Refs.@16–18#.
Furthermore, correlated site-bond percolation has also b
investigated since the seminal papers in Ref.@19#. Here we
present results for site-bond percolation and phase diagr
for a general class of self-consistent lattice models of in
mogeneous media, so-called dual site-bond model@20–22#,
that exhibit a nonmonotonic behavior of the percolati
threshold not displayed by any other correlated site-bo
model in the best knowledge of the authors. Moreover,
characteristics of correlated percolation can be traced to
ementary statistical properties of the disordered media
which it develops.

II. MODEL OF CORRELATED SITE-BOND LATTICE

Let us assume a regular lattice of sites with connectiv
c, connected by bonds. Disorder is simply introduced
characterizing sites and bonds by their sizer s ,r b ~or any
other property of sites and bonds applicable to a given ph
cal process!, having density frequency functionsf s(r s),
f b(r b) and cumulative distributionsS(r s)5*0

r sf s(r )dr,

B(r b)5*0
r bf b(r )dr, respectively. The most transpare

counterpart of our model is a disordered porous medi
c-
735 © 1998 The American Physical Society
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where pore bodies and throats are represented by sites
bonds of our lattice model, respectively@20#. There exists a
natural constraint for sites and bonds, named the construc
principle ~CP!, that requires the whole site-bond lattice to
self-consistent, which can be stated as follows:r si

>r bi j
,

j 51, . . . ,c: for all i , where the indexi runs over the sites
and j runs over thec bonds connected to thei site ~sites are
always equal in size or larger than bonds connected to the!.
This inequality can always be fulfilled iff s and f b do not
overlap at all. However, iff s and f b do overlap~see Fig. 1!,
some sites and bonds cannot be nearest neighbors in th
tice, hence size correlation naturally arises. The elemen
correlation can be explicitly described in its simplest w
through a joint site-bond density functionf sb(r s ,r b)
5 f s(r s) f b(r b)f(r s ,r b), wheref denotes a site-bond corre
lation function. If nothing but maximum configurational e
tropy ~other than CP! is required in order to self-consistent
distribute size for sites and bonds over the lattice,f is given
by the general expression

f~r s ,r b!5
exp@*B~r b!

B~r s!
dB/~B2S!#

B~r s!2S~r s!
for r s>r b

and f(r s ,r b)50 otherwise@20,23#. Let us denoteV, the
degree of overlapping betweenf s and f b , as the common
area under both curves~shaded area in Fig. 1!, thenf bears
the following general properties: limV→0 f51 ~random
site-bond lattice!; limV→1 f}d(r s2r b) ~heterogeneous se
of infinitely large homotatic domains!. V is an elementary
measure of site-bond size correlation.

This description provides a general framework for mo
eling inhomogeneous porous media, stochastic adsorp
fields, etc., with spatial size correlations from the existen
of two distinctive elements of the network that are identifie
in general, as sites and bonds. It is known that real por
materials, such as the Indiana limestone, show correla
between pore bodies and throats sizes@25#. Futhermore, the
simulation of site-bond lattice systems from generalf s(r )

FIG. 1. Site and bond size density frequency distribution fu
tions f s(r ), f b(r ); ~a! null degree of overlapping,V50 ~random
site-bond lattice!; ~b! finite V (0,V<1) ~correlated site-bond lat
tice!.
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and f b(r ) functions turns out to be extraordinarily simp
since the recent development of proper MC techniques@23#.
It simply reduces to statistical relaxation driven by tran
tions fulfilling the CP, from an arbitrary initial configuratio
of site and bonds sizes sampled fromf s and f b , respectively.

III. CORRELATED SITE-BOND PERCOLATION.
RESULTS AND DISCUSSION

Percolation on a square lattice was studied by simula
for uniform site and bond density functions,f x(r x)
51/(xM2xm);xm<r x<xM and f x(r x)50 otherwise, where
x5s,b holds for sites and bonds, respectively~this is the
simplest representation of a highly disordered system!. Two
main procedures were introduced to define the set of oc
pied elements:~P1! sites and bonds of increasing size a
filled up starting from the smallest size~it corresponds to
capillary condensation in porous networks!; ~P2! elements of
decreasing size are filled starting from the biggest size~it
resembles mercury intrusion and oil imbibition of a poro
media!. Accordingly, givenps ,pb , the fraction of occupied
sites and bonds, respectively, the filled phase embodies
elements that fulfillr s<S21(ps), r b<B21(pb) for ~P1! and
r s>S21(12ps), r b>B21(12pb) for ~P2!.

For pure bond (ps51) as well as pure site (pb51) per-
colation, the thresholdpb

c ,ps
c exhibits a minimum for~P2! as

the overlapV increases~so does site-bond correlation! from
0 to 1 ~Fig. 2!. This turns out to be a remarkable behavi
inasmuch as site-bond correlation only promotes coopera
between neighboring elements lowering the threshold
V,0.7, while forV.0.7 the greater the spatial correlatio
the more randomlike percolation behaves~typical lattice size
was L257002 sites~237002 bonds!. Finite-size effects are
shown in Fig. 2. The limitpb

c(0)50.5 is trivial. In addition,

-
FIG. 2. Percolation thresholdpc vs degree of overlappingV

between the distributionsf s , f b . Symbols correspond to MC simu
lation on a square lattice ofL257003700 sites~237003700
bonds!. Filled symbols correspond to pure bonds percolat
(ps51) for procedure~P1! ~filled triangles! and~P2! ~filled circles!,
respectively. Pure site percolation (pb51) is shown with open
symbols for~P1! ~open triangles! and~P2! ~open circles!. A typical
finite-size effect is shown in the line below, for data~filled circles!
andL252003200.
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57 737NONMONOTONICAL BEHAVIOR IN CORRELATED SITE-BOND . . .
pb
c(V)50.5 for V→1 would be expected since sites a

bonds segregate into infinitely large domains containing
ments of equal size with neither concave nor convex bou
ary, thus mapping the lattice problem onto continuum r
dom percolation@24#.

An even more unexpected finding is thatpb
c(V) shows a

maximum for~P1! at approximately the same value ofV as
~P2!. In other words, the critical fraction is larger than th
one for random percolation, which, to the author’s b
knowledge, has never been observed before in t
dimensional~2D! randomlike percolation. We should bear
mind that these are straightforward consequences of the
ementary construction principle~CP! and maximum entropy
principle.

The facts can be rationalized by considering the influe
of elementary correlations on the morphology of the setsG1 ,
G2 including the elements that belong to the occupied ph
defined by~P1! and ~P2!, respectively. We calculate the e
ementary correlation function

Cbb,i5
Š~r b2^r b&!~r b82^r b&!‹

Š~r b2^r b&!2
‹

,

wherer b , r b8 are nearest neighbor bondsPG i and ^r b&, the
statistical mean over the set, fori 51,2. All long-ranged cor-
relations can be thought of as merely consequences of
basic correlation, so the topological features of percolat
can already be inferred fromCbb,i . As Fig. 3 shows,Cbb,2

increases monotonically withV, thereby loweringpb
c for

V<0.7– 0.75 as shown in Fig. 2. Within this rangeCbb,1 is
almost vanishing, thus in agreement withpb

c'0.5 for
V<0.6; thenpb

c increases, reaching a maximum atV'0.75.
This extraordinary increment appears because part of p
G1 is embodied and isolated within phaseG2 under the form
of small clusters~provided thatCbb,1,Cbb,2 and both do-
mains topologically coexist!, hence, it does not contribute t
percolation as it would do for RP. WhenCbb,1.Cbb,2 this

FIG. 3. Nearest neighbor~NN! bond correlation functions,Cbb,1

~open triangles!, Cbb,2 ~open circles!, vs V corresponding to the
domainsG1 , G2 defined by procedures~P1! and~P2! at percolation,
respectively. Filled squares showCbb for all NN bonds of the lat-
tice.
-
d-
-

t
-

el-

e

se

is
n

se

effect reverses and both percolation thresholds tend to 0.5
V→1 where the domainsG1 andG2 turn out to be topologi-
cally equivalent. For pure-site percolation (pb51) also a
local minimum appears forR2. The effect is smoother tha
the one for bonds because of the lower connectivity of si

All the observed extrema showed up at approximately
same value ofV regardless of the particular mechanism
filling up elements of the lattice. This clearly displays a d
tinctive characteristic of the disordered media underly
percolation. The phase diagram for the percolatio
nonpercolation transition~Fig. 4! shows the general case o
site-bond percolation for both~P1! and ~P2! rules. It can be
observed that a mimimum ofpb

c is reached for~P2! even
though the site occupation probability is other than one~for
ps<0.5 percolation is not attainable in any way!. Figure 4~b!
displays a rich phase diagram where maxima inpc

b are still
possible forps>0.9.

A simplistic physical effect of the nonmonotonic behavi

FIG. 4. Phase diagram for the percolating-nonpercolating pha
as a function of the fraction of occupied sites,ps ~vertical axis! and
bondspb ~horizontal axis! ~a! for ~P2!; ~b! for ~P1!. As shown in the
insets, the various symbols correspond to an increasing value o
degree of overlappingV betweenf s(r ) and f b(r ).
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of pb
c(ps

c) discussed above can be visualized by conside
imbibition and drainage in 2D structures@26#. Although per-
colation does not rigorously match the characteristics o
fluid phase in a porous medium it is accepted that the e
caused by modeling invasion percolation by means of R
often negligible@4#. If we think of a 2D structure initially
filled by a nonwetting~NW! phase that is displaced by
wetting (W) phase sequentially invading the smallest e
ments connected to the interface, the latter will bre
through the structure, forming a spanning cluster when
fraction of invaded elements reachespb

c ~the limiting case of
pure bond percolation is depicted by full triangles in Fig.!.
Since at this stage the fraction of the NW phase expe
from the network is alsopb

c ~the remaining gets trapped i
the form of clusters surrounded by theW fluid!, the result in
Fig. 2 means that there exists a correlated struc
(V'0.75) for which the volume recovered~relative to the
total volume! reaches a maximum before the invading flu
flows throughout it. Conversely, for drainage the NW pha
displaces theW fluid from the largest pore connected to th
interface as the external pressure is increased. The effe
topological correlation on percolation properties for draina
would rather match the results shown by circles in Fig
~full circles and empty circles denote pure bond and pure
percolation, respectively!. Henceforth, there exists a measu
of correlations,V'0.7, for which the percolation threshol
is minimum for drainage and maximum for imbibition in th
same porous structure.

IV. CONCLUSIONS

Percolation features of a very general class of inhomo
neous site-bond lattices have been presented. All topolog
-
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properties of the lattice elements are notad hocassumptions
but straightforward consequences of two essential princip
that is, the construction principle and the maximum entro
principle. There is a dominant result in the present work t
follows from the basic assumptions, namely, the correlat
and topology of the set of small elements in the inhomo
neous network are, in general, distinct from those of
large elements. This is a general outcome of the dual s
bond model, which is expected to be valid in lattices that
not two dimensional. A precise resolution of small and lar
pore-size correlations in a void-space network of porous m
terials would be desirable to check the pertinence of
present description to real systems.

The study addresses an unexpected behavior of sim
percolation properties of a disordered system conceived u
general grounds. The distinct behavior of the percolat
phase of large sites and bonds compared with the co
sponding to small ones, caused by the spatial size correla
between the lattice entities, appears as a unique characte
of the inhomogeneous media that should considerably in
ence~and hence could be confirmed! physical processes tak
ing place within the porous space like capillary conden
tion, mercury intrusion, imbibition, and drainage fluid pha
morphologies.
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